教学文库网 - 权威文档分享云平台
您的当前位置:首页 > 精品文档 > 综合文档 >

中考二次函数压轴题及答案(9)

来源:网络收集 时间:2026-01-22
导读: 【点评】本题是二次函数的综合题,考查了二次函数的性质,三角形全等的判定和性质,平行四边形的判定,待定系数法求一次函数的解析式等,求得A的坐标是解题的关键. 9.(2015?鄂州)如图,在平面直角坐标系xOy中,

【点评】本题是二次函数的综合题,考查了二次函数的性质,三角形全等的判定和性质,平行四边形的判定,待定系数法求一次函数的解析式等,求得A的坐标是解题的关键.

9.(2015?鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.

(1)①直接写出点B的坐标;②求抛物线解析式.

(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标. (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

【考点】二次函数综合题.菁优网版权所有 【专题】压轴题.

【分析】(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;

(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=

m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用

配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标; (3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ④当点M在第四象限时,解题时,需要注意相似三角形的对应关系. 【解答】解:(1)①y=∴C(0,2),A(﹣4,0),

由抛物线的对称性可知:点A与点B关于x=﹣对称, ∴点B的坐标为1,0).

②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),

第41页(共90页)

当x=0时,y=2,当y=0时,x=﹣4,

∴可设抛物线解析式为y=a(x+4)(x﹣1), 又∵抛物线过点C(0,2), ∴2=﹣4a ∴a=∴y=

x2

x+2.

m2

m+2).

(2)设P(m,

过点P作PQ⊥x轴交AC于点Q,

∴Q(m,m+2), ∴PQ==

m2

m+2﹣(m+2)

m2﹣2m,

∵S△PAC=×PQ×4,

=2PQ=﹣m2﹣4m=﹣(m+2)2+4,

∴当m=﹣2时,△PAC的面积有最大值是4, 此时P(﹣2,3).

(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=, ∴∠CAO=∠BCO, ∵∠BCO+∠OBC=90°, ∴∠CAO+∠OBC=90°, ∴∠ACB=90°,

∴△ABC∽△ACO∽△CBO, 如下图:

第42页(共90页)

①当M点与C点重合,即M(0,2)时,△MAN∽△BAC; ②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC; ③当点M在第四象限时,设M(n,∴MN=n2+n﹣2,AN=n+4 当

时,MN=AN,即n2+n﹣2=(n+4)

n2

n+2),则N(n,0)

整理得:n2+2n﹣8=0

解得:n1=﹣4(舍),n2=2 ∴M(2,﹣3); 当

时,MN=2AN,即n2+n﹣2=2(n+4),

整理得:n2﹣n﹣20=0 解得:n1=﹣4(舍),n2=5, ∴M(5,﹣18).

综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.

【点评】本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质. 10.(2015?衡阳)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM. (1)求抛物线的函数关系式;

(2)判断△ABM的形状,并说明理由; (3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.

第43页(共90页)

【考点】二次函数综合题.菁优网版权所有 【专题】压轴题. 【分析】(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;

(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;

(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围. 【解答】解:(1)∵A点为直线y=x+1与x轴的交点, ∴A(﹣1,0),

又B点横坐标为2,代入y=x+1可求得y=3, ∴B(2,3),

∵抛物线顶点在y轴上,

∴可设抛物线解析式为y=ax2+c, 把A、B两点坐标代入可得

,解得

∴抛物线解析式为y=x2﹣1;

(2)△ABM为直角三角形.理由如:

由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1), ∴AM=

,AB=

=

=3

,BM=

=2

∴AM2+AB2=2+18=20=BM2, ∴△ABM为直角三角形;

(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2

+2m,即y=x2﹣2mx+m2+2m, 联立y=x,可得

,消去y整理可得x2﹣(2m+1)x+m2+2m=0,

∵平移后的抛物线总有不动点,

∴方程x2﹣(2m+1)x+m2+2m=0总有实数根, ∴△≥0,即(2m+1)2﹣4(m2+2m)≥0, 解得m≤,

即当m≤时,平移后的抛物线总有不动点.

第44页(共90页)

【点评】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、一元二次方程等知识点.在(1)中确定出A、B两点的坐标是解题的关键,在(2)中分别求得AB、AM、BM的长是解题的关键,在(3)中确定出抛物线有不动点的条件是解题的关键.本题考查知识点较为基础,难度适中.

11.(2015?孝感)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点. (1)求抛物线的解析式;

(2)在AC上方的抛物线上有一动点P.

①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;

②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.

【考点】二次函数综合题.菁优网版权所有 【专题】压轴题. 【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;

(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;

②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用

,可求出x的值,解方程求出x的值可得点P

的坐标,代入直线y=kx即可求出k的值. 【解答】解:(1)∵直线y=x+4经过A,C两点, ∴A点坐标是(﹣4,0),点C坐标是(0,4), 又∵抛物线过A,C两点, ∴

,解得:

第45页(共90页)

…… 此处隐藏:1505字,全部文档内容请下载后查看。喜欢就下载吧 ……
中考二次函数压轴题及答案(9).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.jiaowen.net/wendang/402758.html(转载请注明文章来源)
Copyright © 2020-2025 教文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:78024566 邮箱:78024566@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)