中考二次函数压轴题及答案(8)
(3)由(2)知:当t=5时,S最大=,
∴当t=5时,OC=5,OD=3, ∴C(0,5),D(3,0), 由勾股定理得:CD=,
设直线CD的解析式为:y=kx+b, 将C(0,5),D(3,0),代入上式得: k=﹣,b=5,
∴直线CD的解析式为:y=﹣x+5,
过E点作EF∥CD,交抛物线与点P,如图1,
设直线EF的解析式为:y=﹣x+b, 将E(﹣2,0)代入得:b=﹣
,
,
∴直线EF的解析式为:y=﹣x﹣将y=﹣x﹣
,与y=﹣x2+3x+8联立成方程组得:
,
解得:,,
第36页(共90页)
∴P(,﹣);
过点E作EG⊥CD,垂足为G, ∵当t=5时,S△ECD=∴EG=
,
,过点N作NM⊥x轴,垂足
=
,
过点D作DN⊥CD,垂足为N,且使DN=为M,如图2,
可得△EGD∽△DMN, ∴
,
即:,
解得:DM=∴OM=
,
,
由勾股定理得:MN=∴N(
,
),
=,
过点N作NH∥CD,与抛物线交与点P,如图2, 设直线NH的解析式为:y=﹣x+b,
第37页(共90页)
将N(,),代入上式得:b=, ,
∴直线NH的解析式为:y=﹣x+将y=﹣x+
,与y=﹣x2+3x+8联立成方程组得:
,
解得:,,
∴P(8,0)或P(,),
综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(或P(,
).
,﹣
)或P(8,0)
【点评】此题考查了二次函数的综合题,主要涉及了以下知识点:用待定系数法
求函数关系式,函数的最值问题,三角形的面积公式及用二元一次方程组求交点问题等.解决(3)用到的知识点是两条平行线间的距离处处相等. 8.(2015?南昌)如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为 3 ,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 ﹣1≤x≤1 .
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.
【考点】二次函数综合题.菁优网版权所有
第38页(共90页)
【专题】压轴题. 【分析】(1)把二次函数L1:y=ax2﹣2ax+a+3化成顶点式,即可求得最小值,分别求得二次函数L1,L2的y值随着x的增大而减小的x的取值,从而求得二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围;
(2)先求得E、F点的坐标,作MG⊥y轴于G,则MG=1,作NH⊥y轴于H,则NH=1,从而求得MG=NH=1,然后证得△EMG≌△FNH,∠MEF=∠NFE,EM=NF,进而证得EM∥NF,从而得出四边形ENFM是平行四边形;
(3)作MN的垂直平分线,交MN于D,交x轴于A,先求得D的坐标,继而求得MN的解析式,进而就可求得直线AD的解析式,令y=0,求得A的坐标,根据对称轴从而求得另一个交点的坐标,就可求得方程﹣a(x+1)2+1=0的解. 【解答】解:(1)∵二次函数L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3, ∴顶点M坐标为(1,3), ∵a>0,
∴函数y=ax2﹣2ax+a+3(a>0)的最小值为3,
∵二次函数L1的对称轴为x=1,当x<1时,y随x的增大而减小;
二次函数L2:y=﹣a(x+1)2+1的对称轴为x=﹣1,当x>﹣1时,y随x的增大而减小;
∴当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1; 故答案为:3,﹣1≤x≤1.
(2)由二次函数L1:y=ax2﹣2ax+a+3可知E(0,a+3),
由二次函数L2:y=﹣a(x+1)2+1=﹣a2x﹣2ax﹣a+1可知F(0,﹣a+1), ∵M(1,3),N(﹣1,1), ∴EF=MN=
=2
,
∴a+3﹣(﹣a+1)=2, ∴a=﹣1,
作MG⊥y轴于G,则MG=1,作NH⊥y轴于H,则NH=1, ∴MG=NH=1,
∵EG=a+3﹣3=a,FH=1﹣(﹣a+1)=a, ∴EG=FH,
在△EMG和△FNH中,
,
∴△EMG≌△FNH(SAS), ∴∠MEF=∠NFE,EM=NF, ∴EM∥NF,
∴四边形ENFM是平行四边形; ∵EF=MN,
∴四边形ENFM是矩形;
(3)由△AMN为等腰三角形,可分为如下三种情况:
①如图2,当MN=NA=2时,过点N作ND⊥x轴,垂足为点D,则有ND=1,DA=m﹣(﹣1)=m+1,
在Rt△NDA中,NA2=DA2+ND2,即(2)2=(m+1)2+12,
第39页(共90页)
∴m1=﹣1,m2=﹣﹣1(不合题意,舍去), ∴A(﹣1,0).
由抛物线y=﹣a(x+1)2+1(a>0)的对称轴为x=﹣1, ∴它与x轴的另一个交点坐标为(﹣1﹣,0).
2
∴方程﹣a(x+1)+1=0的解为x1=﹣1,x2=﹣1﹣. ②如图3,当MA=NA时,过点M作MG⊥x轴,垂足为G,则有OG=1,MG=3,GA=|m﹣1|,
∴在Rt△MGA中,MA2=MG2+GA2,即MA2=32+(m﹣1)2, 又∵NA2=(m+1)2+12,
∴(m+1)2+12=32+(m﹣1)2,m=2, ∴A(2,0),
则抛物线y=﹣a(x+1)2+1(a>0)的左交点坐标为(﹣4,0), ∴方程﹣a(x+1)2+1=0的解为x1=2,x2=﹣4. ③当MN=MA时,32+(m﹣1)2=(2)2, ∴m无实数解,舍去.
综上所述,当△AMN为等腰三角形时,方程﹣a(x+1)2=0的解为 x1=﹣1,x2=﹣1﹣或x1=2,x2=﹣4.
第40页(共90页)
…… 此处隐藏:635字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [综合文档]应答器设备技术规范(征求意见稿)A1
- [综合文档]教师 2012年高考政治试题按考点分类汇
- [综合文档]保险公司的总经理助理竞职演说
- [综合文档]卫生应急大练兵大比武活动考试--题库(
- [综合文档]徐州经济技术开发区总体规划环境影响报
- [综合文档]汉语拼音表(带声调)
- [综合文档]二年级 上 思维训练( 1~18)
- [综合文档]特色学校五年发展规划
- [综合文档]机床经常出现报警“X1轴定位监控”
- [综合文档]《电子技术基础》21.§5—2、3、4 习题
- [综合文档]浙江省深化普通高中课程改革
- [综合文档]CRISP原理 - 图文
- [综合文档]2017年电大社会调查研究与方法形考答案
- [综合文档]浅析建筑施工安全毕业论文
- [综合文档]《回忆我的母亲》名师教案
- [综合文档]装饰装修工程监理规划
- [综合文档]三下乡心得体会-文艺
- [综合文档]柱计算长度系数 - 图文
- [综合文档]全流程思考,提高燃电系统热电转换率--
- [综合文档]2018年嘉定区中考物理一模含答案
- 433M车库门滚动码遥控器
- 8、架空线路施工规范
- 大学四年声乐学习的体会
- 新北师大版五年级数学上册《轴对称再认
- 部编版五年级上册语文第六单元小结复习
- 小学六年级英语形容词用法
- 第2课 抗美援朝保家卫国 课件01(岳麓版
- 2015年天津大学运筹学基础考研真题,考
- 微机计算机控制技术课后于海生(第2版)
- 安全教育实践活动
- Delphi程序设计教程_第1章_Delphi概述
- 第八讲 工业革命与启蒙运动
- 《中华人民共和国药典》2005年版二部勘
- 科粤版九年级化学2.3构成物质的微粒(1)
- 西师大版数学三年级下册《长方形、正方
- ch6_冒泡排序演示
- 第4章 冲裁模具设计
- 浙江中小民营企业员工流失论文[终稿]
- 再议有线数字电视市场营运模式
- 昆明供水工程监理大纲




