二次函数题型分类总结(学生版)(2)
三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。 5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
6.已知x=1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式 。
2
7.抛物线y=2x+bx+c与x 轴交于(2,0)、(-3,0),则该二次函数的解析式 。
22
8.若抛物线y=ax+bx+c的顶点坐标为(1,3),且与y=2x的开口大小相同,方向相反,则该二次函数的解析式 。
2
9.抛物线y=2x+bx+c与x 轴交于(-1,0)、(3,0),则b= ,c= . 10.若抛物线与x 轴交于(2,0)、(3,0),与y轴交于(0,-4),则该二次函数的解析式 。 11.根据下列条件求关于x的二次函数的解析式
3
(1)当x=3时,y最小值=-1,且图象过(0,7)(2)图象过点(0,-2)(1,2)且对称轴为直线x=
2
(3)图象经过(0,1)(1,0)(3,0)(4)当x=1时,y=0; x=0时,y= -2,x=2 时,y=3
(5) 抛物线顶点坐标为(-1,-2)且通过点(1,10)
2
11.当二次函数图象与x轴交点的横坐标分别是x1= -3,x2=1时,且与y轴交点为(0,-2),求这个二次函数的解析式
2
12.已知二次函数y=ax+bx+c的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
111
13.知二次函数图象顶点坐标(-3)且图象过点(2, ),求二次函数解析式及图象与y轴的交点坐标。
22
14.已知二次函数图象与x轴交点(2,0), (-1,0)与y轴交点是(0,-1)求解析式及顶点坐标。
1
15.若二次函数y=ax2+bx+c经过(1,0)且图象关于直线x= 对称,那么图象还必定经过哪一点?
2
16.y= -x2+2(k-1)x+2k-k2,它的图象经过原点,求①解析式 ②与x轴交点O、A及顶点C组成的△OAC面积。
1
17.抛物线y= (k2-2)x2+m-4kx的对称轴是直线x=2,且它的最低点在直线y= - +2上,求函数解析式。
2
二次函数应用
(一)经济策略性
1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。假定每月销售件数y(件)是价格X的一次函数. (1)试求y与x的之间的关系式.
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)
2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。 (1)设X天后每千克活蟹的市场价为P元,写出P关于X的函数关系式。
(2)如果放养X天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式。 (2)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额—收购成本—费用),最大利润是多少?
3.某商场批单价为25元的旅游鞋。为确定 一个最佳的销售价格,在试销期采用多种价格进性销售,经试验发现:按每双30元的价格销售时,每天能卖出60双;按每双32元的价格销售时,每天能卖出52双,假定每天售出鞋的数量Y(双)是销售单位X的一次函数。 (1)求Y与X之间的函数关系式;
(2)在鞋不积压,且不考虑其它因素的情况下,求出每天的销售利润W(元)与销售单价X之间的函数关系式; (3)销售价格定为多少元时,每天获得的销售利润最多?是多少?
相关推荐:
- [幼儿教育]【完整版】2019-2025年中国药物发现外
- [幼儿教育]2018-2019年初中信息技术广东初一竞赛
- [幼儿教育]最新外研版(一起)小学英语五年级上册《
- [幼儿教育]农业推广与创新管理专业 -中农大毕业论
- [幼儿教育]2017-2022年中国更年期用药行业市场深
- [幼儿教育]数学1.1.2第1课时棱柱、棱锥和棱台的结
- [幼儿教育]二年级群文阅读课例欣赏
- [幼儿教育]2010-2015年中国保险行业投资分析及深
- [幼儿教育]厄运打不垮的信念第一课时
- [幼儿教育]巧用文本,让表达在言语中绽放论文
- [幼儿教育]中学生百科知识竞赛题及答案
- [幼儿教育]八大菜系英文简介
- [幼儿教育]中国男装牛仔裤市场发展研究及投资前景
- [幼儿教育]远程数字视频监控系统在银行的应用
- [幼儿教育]光纤光缆制造工艺及设备
- [幼儿教育]国家安全法试题及答案
- [幼儿教育]2011高中提前招生及竞赛试题(物理卷1)
- [幼儿教育]宁夏第三产业房地产业、科学研究和技术
- [幼儿教育]中兴通讯 ME3000模块用户硬件设计手册_
- [幼儿教育]紫外线灯管的辐照强度问题
- 苏联东欧剧变的原因和历史教训浅析
- 人工智能导论实验报告(学生)
- 思科ITE章考试原题及答案
- 《学习雷锋好榜样》主题班会教案
- 加油站建设项目安全评价报告
- 剖析社保卡管理系统
- 2017-2018年影视剧新媒体版权运营行业
- 2017-2018学年四川省成都市高一上学期
- 2019最新高中数学 第三章 3.2.1 几类不
- 2011-2015年中国基酸市场调查及行业前
- 人教版新课标选修八Unit 1 课件Warming
- 郭溪燎原小学辅导学生记录表
- 教师资格证统考综合素质写作秘笈
- 国外校园绿色建筑研究方向与建设实践
- 15.1 动物运动的方式 课件(北师大版八
- 民用飞机空调系统
- 长安侠文化传统与唐诗的任侠主题
- 《中国近现代史纲要》名词解释
- 11金本《保险学概论》复习资料
- 民用建筑机电安装工程专业施工图图纸会