Accurate computation of the smallest eigenvalue of a diagona(4)
s+1e,|η10|≤(φ(n)+2) +O( 2).Bse≥(1+η10)λ
ItfollowsfromLemma2.2that
s+1≤γs≤(1+η9)λ s+1,(1+η10)λ
andhence λ s+1 γs s+1e+η7λ
λ s λλ ≤(βsλ)
(s+1)w i=minu (s)
s, (s),λLetλs+1bethequantitythatiscomputedintheexactarithmeticfromu
v (s)bythe(s+1)-thiterationstepofAlgorithm2.Wehave (s)
u s+minλs+1=λ.w (s+1)u (s).
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
232ATTAHIRUSULEALFA,JUNGONGXUE,ANDQIANGYE
+1FromTheorem3.1, λ s+1 λs
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
ACCURATECOMPUTATIONOFTHESMALLESTEIGENVALUE233
Table1.Case1:λisill-conditioned
1.0×10 3
1.0×10 6
1.0×10 9
1.0×10 12
1.0×10 18
1.0×10 24
1.0×10 301.1×10 31.15×10 61.2×10 91.3×10 121.5×10 181.7×10 242.0×10 30 ||λ λ|λ λQR|4.7×10 132.06×10 114.7×10 104.9×10 93.5×10 58.0×10 21.7×10 1
Example1.Considerthen×nM-matrixA=(P,e,v),where
(5.1) P= 0
δ00...1001......0000······...······00... 1 0
and
(5.2)v=(0,0,···,0,1 δ),
i.e.A=I P.Letxandybetheunitrightandlefteigenvectorscorrespondingto
1n.λ,thesmallesteigenvalueofA.Itisshownin[11]thatλ=1 δ
Ifδistiny,thenλisill-conditionedsinceyTxisveryclosetozero.Ifδtendsto1,yTxisnotsmallandthusthesmallesteigenvalueiswell-conditioned,butitistiny.
WetestouralgorithmandtheQRalgorithmonbothcasesofsuchM-matrices. andλQRdenotethesmallesteigenvaluescomputedbyInthefollowing,weletλ
Algorithm2andtheQRalgorithmrespectively.
Case1.n=100andδ~0.Table1presentstheresults.Asitshows,Algorithm2computesthesmallesteigenvaluesalmosttofullprecisionnomatterhowsmallδis.Ontheotherhand,theQRalgorithmlosessigni cant guresasδdecreases.Ifδ≤10 24,onlyone gureofthecomputedeigenvalueiscorrect. s λ|/λagainstsinForthisexample,wealsoplotconvergencehistoryof|λ
Figure1(insolidlineforδ=10 3andindottedlineforδ=10 9).Itclearlyshowsthequadraticconvergencepropertyin niteprecisionasdemonstratedbyTheorem4.3.
Case2.n=20andδ~1.WereporttheresultsinTable2.Again,ouralgorithmcancomputeλtofullprecisionnomatterhowtinyitis,whileQRalgorithmhaslowaccuracyasδdecreases.
ThematricesinExample1areverysparse.Nextweconsidertestingondensematrices.
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
234ATTAHIRUSULEALFA,JUNGONGXUE,ANDQIANGYE
Table2.Case2:λistinyrelativeto A
≥
10
(1 10 6)20
10 9
(1 10 12)20
10 1503.1
3λλ3.3×10 134.2×10 168.6×10 7
dotted-δ=10 9
Example2.Considerthen×nM-matrixA=(P,e,v)de nedby
v=(δ,···,δ,65δ/128,191δ/128)T
and
P= .P1
uTw0
whereP1isofordern 1withalltheo -diagonalentriesequalto1,
u=(0,···,0,δ/128)Tw=(0,···,0,δ/2)T.
Thesmallesteigenvalueofthismatrixisδandthecorrespondingeigenvectoris(1,···,1,1/64)T.
Wetestouralgorithmwithvariousnandδ.Tables3and4reportsthenumericalresultsforn=100andn=1000.Weobservethat,forthesedensematrices,increase either.ofndoesnota ecttheaccuracyofcomputedeigenvalueλ
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
ACCURATECOMPUTATIONOFTHESMALLESTEIGENVALUE235
Table3.100×100densematrix
10 3
10 6
10 9
10 12
10 15014.2×10 162.3×10 6λλ4.9×10 12
Table4.1000×1000densematrix
10
10 6
10 9
10 12
10 152.0×10 162.2×10 1 3λλ2.5×10 108.5×10 161.3×10 4
References
[1]A.AhacandD.Olesky,AstablemethodfortheLUfactorizationofM-matrices,SIAMJ.Alg.Disc.Meth.,7(1986):368-378.MR87i:65035
[2]J.Abate,L.ChoudhuryandW.Whitt,Asymptoticsforsteady-statetailprobabilitiesin
structuredMarkovqueueingmodels,Commun.Statist-StochasticModels,1(1994):99-143.MR95f:60106
[3]A.S.Alfa,J.XueandQ.Ye,EntrywiseperturbationtheoryfordiagonallydominantM-
matriceswithapplications,toappearinNumer.Math.
[4]J.BarlowandJ.Demmel,Computingaccurateeigensystemsofscaleddiagonallydominant
matrices,SIAMJ.Num.Anal.,27(3),(1990):762-791.MR91g:65071
[5]A.BermanandR.Plemmons,Nonnegativematricesinmathematicalscience,Academic
Press,NewYork,1979.MR82b:15013
[6]S.ConteandC.deBoor,ElementarynumericalanalysisThirdedition,NewYork-
Tokyo:McGraw-Hill1980.
[7]J.DemmelandW.Kahan,Accuratesingularvaluesofbidiagonalmatrices,SIAMJ.Sci.
put,11(5)(1990):873-912.MR91i:65072
[8]J.Demmel,AccurateSVDsofstructuredmatrices,LAPACKWorkingNote#130,Dept.of
ComputerScience,Univ.ofTennessee,Oct.1977.
[9]J.Demmel,M.Gu,S.Eisenstat,I.Slapni car,K.Vaseli´candZ.Dram c,Computingthe
singularvaluedecompositionwithhighrelativeaccuracy,LinearAlgebraAppl.299 …… 此处隐藏:3640字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [教育文库]夜场KTV服务员的岗位职责及工作流程[1]
- [教育文库]企划、网络、市场绩效考核方案
- [教育文库]学党史、知党情、强党性--“党的基本理
- [教育文库]2016年高考物理大一轮总复习(江苏专版
- [教育文库]干部廉洁自律自查自纠的报告
- [教育文库]2010年北京大学心理学系拟录取硕士研究
- [教育文库]资金时间价值练习题及答案
- [教育文库]保护环境的心得体会
- [教育文库]英语角内容:英语趣味小知识
- [教育文库]档案收集与管理工作通知
- [教育文库]劳动规章制度范本范本
- [教育文库]高考物理一轮复习课后限时作业1运动的
- [教育文库]机械工艺夹具毕业设计195推动架设计说
- [教育文库]通用技术教学比赛说课稿2
- [教育文库]2018年四年级英语下册 Module 7 Unit 2
- [教育文库]第2章 宽带IP网络的体系结构
- [教育文库]九年级化学第五单元课题3《根据化学方
- [教育文库]小学英语六年级情态动词用法归纳
- [教育文库]甲级单位编制窑井盖项目可行性报告(立
- [教育文库]2016-2021年中国城市规划行业全景调研
- 高考英语听力十大场景词汇总结
- 全省领导班子思想政治建设座谈会会议精
- 人教版新课标高一英语提优竞赛试题 下
- 江西省2014年生物中考试题
- 长沙镇食品药品安全事故应急预案
- 《金刚石、石墨和C60》片段教学设计
- 福州教育学院(王旭东)
- 基于EDA音乐播放器的设计
- 9、古诗两首《夜书所见》《九月九日忆
- 小学语文课外阅读有效策略探讨
- 贵州文化产业发展成支柱产业的问卷调查
- 膀胱类癌的诊治体会(附3例报告)
- 发动机积碳产生的原因
- Configuring Code Composer Studio for
- 学生良好的心理素质如何培养点滴谈
- 46 电沉积法制备锂离子电池用硅-锂薄膜
- 美舍雅阁公司管理中各部门职责
- 去壳剥皮的小妙招
- 六自由度运动平台的仿真研究
- Pride and Prejudice(傲慢与偏见)