Accurate computation of the smallest eigenvalue of a diagona(3)
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
226ATTAHIRUSULEALFA,JUNGONGXUE,ANDQIANGYE
putingthesmallesteigenvalue
Inthissection,weconsiderhowtocomputethesmallesteigenvalueofadi-agonallydominantirreducibleM-matrixA,whichisgivenintherepresentationA=(P,u,v).
4.1.Theinverseiterationalgorithm.ThealgorithmtobedevelopedhereisbasedonthefollowinginverseiterationshiftedbyaRayleighquotientlikeapprox-imationoftheeigenvalue.
ShiftedInverseIteration:
Foragivenu(0)>0,iterativelyde ne
(s)Auλs=min
w(s+1) ∞.
ThisinverseiterationalgorithmwaspresentedbyXuein[26]forM-matrices.
It
stems
from
the
algorithmbyNodain[17]forcomputingthePerronrootofanirreduciblenonnegativematrix.Elsner[10]hasshownthatNoda’salgorithmisquadraticallyconvergent.Thustheaboveeigenvalueisincreasingandquadraticallyconvergent,i.e.,
λs≤λs+1≤λandλ λs+1≤β(λ λs)2,
whereβisaconstantdependingonu(0)andA.Itisnotedin[26]thatλs+1canbecomputedfromλswithoutsubtractionsfollowingtherelation
(s) Aw(s+1)u+min=λλs+1=minsw(s+1)
u(s)>0(thispropertyisalso
observedandusedbyO’Cinneide[20]).Thus,thekeyideaisthatA λsIcanberepresentedwithoutformingthediagonalsas
A λsI=(P,u(s),v(s)),
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
ACCURATECOMPUTATIONOFTHESMALLESTEIGENVALUE227
where
v(s)=
=(A λsI)u(s)1
(λs 1w(s)+u(s 1) λsw(s))
w(s)w(s) w(s) ∞=1
≥0.Hence,weshallformA λsIbytherepresentation(P,u(s),v(s))andthensolve(4.1)withAlgorithm1.Inthisprocess,subtractionisencounteredonlyinthecomputationofv(s).Onaccountofpossiblecancellation,wecannotexpectw(s+1)andu(s+1)arecomputedwithsmallentrywiserelativeerror.Fortunately,however,thiswillnota ecttheaccuracyofthecomputedeigenvalue,whichwillbeshowninthelatererroranalysis.
Finally,forthestoppingcriterion,weadopt (s)umaxw(s+1)
u Fors=0,1,2,···etheGTH-likealgorithmtosolve,v(0)=v λ0u.
(P,u(s),v(s))w(s+1)=u(s)
2.
λs+1=λs+min u(s)
w(s+1) ∞
4.Calculatev(s+1)accordingto (s)ui(s+1)(s+1)=uivi
5.Proceeduntil
max w(s+1) w(s+1)u(s)
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
228ATTAHIRUSULEALFA,JUNGONGXUE,ANDQIANGYE
Remark4.1.ThisalgorithmcanbeadaptedtocomputethesmallesteigenvalueofanarbitraryM-matrixAby rst ndingarepresentation,i.e., ndingapositivevectorusuchthatAu>0.Aftercalculatingv=Au,weapplyAlgorithm2tocomputethesmallesteigenvalueof(P,u,v),where Pistheo -diagonalpartof
A.Asforu,itcanbeobtainedbysolvingthelinearsystemAu=e.Withasmallresidual,wecanexpectAu ,whereu isthecomputedsolution,tobepositive.
4.2.Erroranalysis.Inthissection,wepresentadetailederroranalysisforAl-gorithm2.Again,weadd“hats”tothecomputedintermediatequantities.
Firstnotethattheoretically(intheexactarithmetic),from(A λsI)u(s)=v(s),wehavetherepresentationofAinthes-thiterationstepas
A=(P,u(s),λsu(s)+v(s)).
s,u (s)andv (s)bethecomputedquantitiesatInthe oatingpointarithmetic,letλ
thes-thiteration.Then
su (s),λ (s)+v (s))As=(P,u
isanapproximationtoA.Becauseofpossiblecancellationsinthecomputationof
(s)canbeabadapproximationofu(s),andforthisreasonitcannotbev(s 1),u
expectedthatAsapproximateAwithsmallentrywiserelativeerror.Whatmakesouralgorithmworkisthat,nomatterwhethersuchcancellationoccursornot,therelativeerrorbetweenγs,thesmallesteigenvalueofAs,andλ,thesmallesteigenvalueofA,isalwayssmall.Toshowthis,we rstinvestigatetherelativeerrorbetweenγsandγs+1,whichiscausedbyonestepofiterationofAlgorithm2.
s, s+1vv(s)andu (s+1),λ (s+1)bethecomputedquantitiesLemma4.2.Letu (s),λ
atthes-thand(s+1)-thiterationofAlgorithm2respectively,andletγsandγs+1bethesmallesteigenvaluesof
su s+1u (s),λ (s)+ v(s))andAs+1=(P,u (s+1),λ (s+1)+v (s+1))As=(P,u
respectively.Then
|γs γs+1|
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dominant M-matrix are known to certain relative accuracy, then its smallest eigenvalue and the entries of its inverse are known to the same order relative accuracy independent of
ACCURATECOMPUTATIONOFTHESMALLESTEIGENVALUE
Notingthat
u(s+1)=w(s+1)
w (s+1) ,∞
weobtain
(4.4)|u(s+1) u(s+1)|≤((2φ(n)+1) +O( 2))u(s+1).
Therespectivei-thentriesofq(s+1)and q(s+1)are
q(s+1)u (s)u
i= λs+min (s)
w(s+1) min
i
(4.5)(s+1)
w(s+1)ui
i
and
q (s+1)(s)
i=fl λs+minu (s)
w (s+1) minu
i
w (s+1)u (s+1)i
+(1+ 5)(1+ 6)u (s+1)
i(1+ u (s)
3)i
w (s+1)
s)
u (s+1))
=i s+ u(
λi
w (s+1)+η2minu (s
i
)
w (s+1)+η2minu (s
iw(s+1).
i
Pluggingthebounds(4.3)and(4.5)into(4.6),wehave
q (s+1)
i=(1+η3)q(s+1)
i,|η3|≤3(φ(n)+3) +O( 2).
Thus
(4.7)|q(s+1) q(s+1)|≤(3(φ(n)+3) +O( 2))q(s+1).
Associating(4.4)and(4.7)withLemma2.1yields
0<γs+1 γs229
Abstract. If each off-diagonal entry and the sum of each row of a diagonally dom …… 此处隐藏:5099字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [教育文库]夜场KTV服务员的岗位职责及工作流程[1]
- [教育文库]企划、网络、市场绩效考核方案
- [教育文库]学党史、知党情、强党性--“党的基本理
- [教育文库]2016年高考物理大一轮总复习(江苏专版
- [教育文库]干部廉洁自律自查自纠的报告
- [教育文库]2010年北京大学心理学系拟录取硕士研究
- [教育文库]资金时间价值练习题及答案
- [教育文库]保护环境的心得体会
- [教育文库]英语角内容:英语趣味小知识
- [教育文库]档案收集与管理工作通知
- [教育文库]劳动规章制度范本范本
- [教育文库]高考物理一轮复习课后限时作业1运动的
- [教育文库]机械工艺夹具毕业设计195推动架设计说
- [教育文库]通用技术教学比赛说课稿2
- [教育文库]2018年四年级英语下册 Module 7 Unit 2
- [教育文库]第2章 宽带IP网络的体系结构
- [教育文库]九年级化学第五单元课题3《根据化学方
- [教育文库]小学英语六年级情态动词用法归纳
- [教育文库]甲级单位编制窑井盖项目可行性报告(立
- [教育文库]2016-2021年中国城市规划行业全景调研
- 高考英语听力十大场景词汇总结
- 全省领导班子思想政治建设座谈会会议精
- 人教版新课标高一英语提优竞赛试题 下
- 江西省2014年生物中考试题
- 长沙镇食品药品安全事故应急预案
- 《金刚石、石墨和C60》片段教学设计
- 福州教育学院(王旭东)
- 基于EDA音乐播放器的设计
- 9、古诗两首《夜书所见》《九月九日忆
- 小学语文课外阅读有效策略探讨
- 贵州文化产业发展成支柱产业的问卷调查
- 膀胱类癌的诊治体会(附3例报告)
- 发动机积碳产生的原因
- Configuring Code Composer Studio for
- 学生良好的心理素质如何培养点滴谈
- 46 电沉积法制备锂离子电池用硅-锂薄膜
- 美舍雅阁公司管理中各部门职责
- 去壳剥皮的小妙招
- 六自由度运动平台的仿真研究
- Pride and Prejudice(傲慢与偏见)