高二数学期末试卷
篇一:高二数学期末考试题
金太阳新课标资源网
高二上学期数学期末复习测试题
一、选择题(本大题共12小题,每小题5分,共60分)
1.下列命题正确的是
22
A.若a?b,c?d,则ac?bd B.若a?b,则ac?bc
( )
C.若a?c?b?c,则a?b D
?a?b 2.如果直线ax?2y?2?0与直线3x?y?2?0平行,那么系数a的值是
23
A.-3B.-6C.? D.
32
y22
3.与双曲线x??1有共同的渐近线,且过点(2,2)的双曲线方程为
4
22y2x2yx??1A.??1 B.
28312
( )
( )
x2y2
??1 C.28
22
D.x?y?1
312
4.下说法正确的有( )
①对任意实数a、b,都有|a+b|+|a-b|?2a;
②函数y=x·?x2(0<x<1)的最大函数值为1
2
③对a?R,不等式|x|<a的解集是{x|-a<x<a}; ④ 若AB≠0,则lg|A|?|B|?lg|A|?lg|B|.
22
A. ①②③④B.②③④ C.②④ D.①④
22
5.直线l过点P(0,2),且被圆x+y=4截得弦长为2,则l的斜率为( )
A.? B.? C.?2D.?
23x2y2
6.若椭圆2?2?1(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的
ab
焦点分成5∶3的两段,则此椭圆的离心率为 ( ) A.
2
7.已知不等式ax?bx?c?0的解集为(—∞,—1)∪(3,+∞),则对于函数
,下
( ) A.f(4)?f(0)?f(1) C.f(0)?f(1)?f(4)
16
B
17
C.
4
5
D
f(x)?ax2?bx?c
列不等式成立的是
B.f(4)?f(1)?f(0) D.f(0)?f(4)?f(1)
2
8.已知直线2x?y?4?0,则抛物线y?x上到直线距离最小的点的坐标为
( )
A.(1,?1)B.(1,1) C.(?1,1)D.(?1,?1)
?x?y?3?09.设z=x?y, 式中变量x和y满足条件?, 则z的最小值为
x?2y?0?
( )
A.1 B.?1 C.3D.?3
10.已知椭圆E的离心率为e,两焦点为F1,F2. 抛物线C以F1为顶点,F2为焦点.P为两
金太阳新课标资源网
曲线的一个交点.若
A.
3
PF1PF2
?e,则e的值为( )
B.
2
C.2
2
D.6
3
二、填空题(本大题共4小题,每小题4分,共16分)
11.设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,
则该椭圆的方程是 .
12.已知两变量x,y之间的关系为lg(y?x)?lgy?lgx,则以x为自变量的函数y的
最小值为________.
13.直线l经过直线x?y?2?0和x?y?4?0的交点,且与直线x?2y?1?0的夹角为45°,则直线l方程的一般式为. 14.已知下列四个命题:
①在直角坐标系中,如果点P在曲线上,则P点坐标一定满足这曲线方程的解; ②平面内与两个定点F1,F2的距离的差的绝对值等于常数的点的轨迹叫做双曲线; ③角α一定是直线y?xtan??2的倾斜角; ④直线3x?4y?5?0关于x轴对称的直线方程为3x?4y?5?0.
其中正确命题的序号是(注:把你认为正确命题的序号都填上) 三、解答题(本大题共6小题,共74分) 15.解不等式x2?2x?1?|x|?0.(12分)
x
16.已知圆x2?y2?9与直线l交于A、B两点,若线段AB的中点M(2,1)
(1)求直线l的方程;(2)求弦AB的长.(12分)
金太阳新课标资源网
17.过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A、B两点,O为坐标原点,直线OA
的斜率为k1,直线OB的斜率为k2.
(1)求k1·k2的值;
(2)两点向准线做垂线,垂足分别为A1、B1,求?A1FB1的大小.(12分)
18.某厂生产甲、乙两种产品,生产每吨甲、乙产品所需煤、电力和所获利润如下表所示:
两种产品各多少,能使利润总额达到最大?(12分)
金太阳新课标资源网
19.已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)
到直线AP的距离为1.
求实数m的取值范围; (2)当m=2+1时,△APQ的内心恰好是点M,求此双曲线的方程.(14分)
(1)若直线AP的斜率为k,且|k|?
20.如图,已知Rt?PAB的直角顶点为B,点P(3,0),点B在y轴上,点A在x轴负半
轴上,在BA的延长线上取一点C,使AC?2AB. (1)在y轴上移动时,求动点C的轨迹C;
(2)若直线l:y?k(x?1)与轨迹C交于M、N两点, 设点D(?1,0),当?MDN为锐角时,求k的取值范围.(14分)
金太阳新课标资源网
参考答案
x2
11. ?y2?1 12. 4 13. x?3y?8?0或3x?y-6?0 14. ① ④
2
三、解答题(本大题共6题,共76分) 15.(12分)
?0时,原不等式可化为:|x?1|?1,解得x?1?1或x?1??1,
即x?2或x?0, 则原不等式的解为:x?2
;当x?0时,原不等式可化为:|x?1|?1?0,该不等式恒成立 所以,原不等式的解为?x|x?0或x?2?.
1
,得kAB???1,?kAB??2, 16.(12分)[解析]: (1)由kAB?kOM??1
2
l:y?1??2(x?2)即2x?y?5?0.
[解析]:当x
(2)原点到直线l的距离为d17.(12分)
[解析]:.设A(x1,y1),B(x2,y2),则k1
?,?AB?2AP?4.
?
yy1
,k2?2,
x2x1
p
),代入抛物线方程2
∵直线AB过焦点F,若直线AB与x轴不垂直,∴可设AB方程为:y=k(x?有
pp1
,则y1·y2=-p2, x2=k(x?)2?2px?k2x2?p(k2?2)x?p2k2?0,可得x1·
244
2
2
∴k1·k2=
y1?y2
k2=-4 ??4?;若直线AB与x轴垂直,得k1=2, k2??2,∴k1·
x1?x2
(2) 如图,∵ A、B在抛物线上,∴ |AF|=|AA1| ∴∠AA1F=∠AFA1,∴∠AFA1= 900??B1A1F 同理 ?BFB1?90???A1B1F
∴ ?A1FB1?1800?(900??B1A1F)?(900??A1B1F)
??B1A1F??A1B1F90o ,
又?B1A1F??A1B1F?1800??A1FB1,
18.(12分)[解析]:设每天生产甲、乙两钟产品分别为xt、
??A1FB1?180??A1FB1??A1FB1?90.
yt,
利润总额为z万元.那么:
?9x
?4y?350, ?
?4x?5y?220,?0 ?x?0, y? z=12x?6y
作出以上不等式组所表示的平面区域,即可行域
z?12x?6y,作出以上不等式组所表示的平面
y?0,把直线l向右上方平移至l?位置时,直线经过
可行域上点M,现与原点距离最大,此时z=12x?6y取最大值.
区域,即可行域(如右图). 作直线l:2x?
篇二:高二数学下期末测试题及答案
高二数学下期末测试题
共150分.
第Ⅰ卷(选择题,共60分)
参考公式:
若数列{an}满足a1=1,a2=1,an= an-1+ an-2,则 a n=
1[(
1?n1?n
)-()] 22
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项
是符合题目要求的。
1. 已知E、F、G、H是空间四点,设命题甲:点E、F、G、H不共面;命题乙:直线EF与GH不相交,那么甲是乙的
…… 此处隐藏:3955字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [高中作文]高一历史教学反思
- [高中作文]高一军训小结800字5篇
- [高中作文]高一新生简单自我介绍范文
- [高中作文]滁州中学高一博客圈
- [高中作文]高一励志主题班会
- [高中作文]如何开快递公司,聚和源快运揽财技高一
- [高中作文]人教版高一生物必修二目录表
- [高中作文]高一信息技术会考复习选择题
- [高中作文]高一历史必修一政治史复习提纲
- [高中作文]高一数学必修一公式大全
- [高中作文]高一地理会考题
- [高中作文]高一家长会家长发言稿
- [高中作文]高一英语必修一词组归纳
- [高中作文]高一数学综合知识点
- [高中作文]高一必修一化学方程式集合
- [高中作文]高一化学实验专题复习
- [高中作文]高一家长会班主任发言稿
- [高中作文]高一英语单词竞赛
- [高中作文]高一物理向心力的实例分析
- [高中作文]高一学生学情分析
- 合作成就共赢作文800字高中(共15篇)
- 故乡的夏天作文800字高中(汇总6篇)
- 高中日记700字:人为什么需要承诺
- 高中日记700字:留住记忆
- 如果不是那场雨作文800字高中(严选23篇
- 关于作文800字高中生(共42篇)
- 发现身边的美高三作文600字(赏析5篇)
- 我最熟悉的那个人600字作文高中(赏析26
- 致夕阳作文600字高中(大全19篇)
- 写事的作文600字优秀高中(通用32篇)
- 高中军训心得体会范文500字【三篇】
- 高中面对挫折作文400字
- 高中作文大全500字【三篇】
- 高中生优秀作文500字范文【三篇】
- 高中作文500字【五篇】
- 高中作文900字:话说冬至
- 高中生评语200字
- 我们的学校高中说明文1300字
- 秦穆公真愚人也高中生作文
- 高中说明文200字:再苦也要笑一笑




