初中数学竞赛专题 勾股定理及其应用
初中数学竞赛专题培训 勾股定理与应用
勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a+b=c. 勾股定理逆定理 如果三角形三边长a,b,c有下面关系:
a2+b2=c2
那么这个三角形是直角三角形.
早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.
关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.
证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为
AB=AE,AC=AG,∠CAE=∠BAG,
所以△ACE≌△AGB(SAS).而
2
2
2
所以 SAEML=b2. ① 同理可证 SBLMD=a. ② ①+②得
SABDE=SAEML+SBLMD=b2+a2,
即 c2=a2+b2.
证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知
△ADG≌△GEH≌△HFB≌△ABC,
所以
AG=GH=HB=AB=c,
∠BAG=∠AGH=∠GHB=∠HBA=90°,
因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即
2
学习地址:佛山市南海区南海大道丽雅苑中区雅广居2 D 第1页 咨询热线:0757-86307067 13760993549(吉老师)
鼎吉教育 遵循:“授人以鱼,不如授人以渔”的教育理念 秉承:以人为本,质量第一,突出特色, 服务家长
化简得 a+b=c.
2
2
2
证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:
△AFE≌△EHD≌△BKD≌△ACB.
设五边形ACKDE的面积为S,一方面 S=SABDE+2S△ABC, ① 另一方面
S=SACGF+SHGKD+2S△ABC. ②
由①,② 所以 c2=a2+b2.
关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.
利用勾股定理,在一般三角形中,可以得到一个更一般的结论.
定理 在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.
证 (1)设角C为锐角,如图2-19所示.作AD⊥BC于D, 则CD就是AC在BC上的射影.在直角三角形ABD中, AB2=AD2+BD2, ①
在直角三角形ACD中,AD2=AC2-CD2, ② 又BD=(BC-CD), ③
②,③代入①得AB=(AC-CD)+(BC-CD) =AC2-CD2+BC2+CD2-2BC·CD =AC2+BC2-2BC·CD, 即c2=a2+b2-2a·CD. ④
(2)设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC在BC(延长线)上的射影.在直角三角形ABD中,
◆ 以鲜明的教育理念启发人 ◆ 以浓厚的学习氛围影响人 第2页 ◆ 以不倦的育人精神感染人 ◆ 以优良的学风学纪严律人◆
2
2
2
2
2
2
AB=AD+BD, ⑤ 在直角三角形ACD中,
222
AD2=AC2-CD2, ⑥ 又BD2=(BC+CD)2, ⑦ 将⑥,⑦代入⑤得 AB=(AC-CD)+(BC+CD) =AC2-CD2+BC2+CD2+2BC·CD =AC2+BC2+2BC·CD, 即c2=a2+b2+2a·cd. ⑧
综合④,⑧就是我们所需要的结论
2
2
2
2
特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述: c2=a2+b2. 因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广). 由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中, (1)若c=a+b,则∠C=90°; (2)若c2<a2+b2,则∠C<90°; (3)若c2>a2+b2,则∠C>90°.
勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用. 例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.
2
2
2
分析 注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.
证 因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以
Rt△AFE≌Rt△ABE(AAS),
所以 AF=AB. ①
在Rt△AGF中,因为∠FAG=45°,所以
AG=FG,
AF2=AG2+FG2=2FG2. ②
学习地址:佛山市南海区南海大道丽雅苑中区雅广居2 D 第3页 咨询热线:0757-86307067 13760993549(吉老师)
鼎吉教育 遵循:“授人以鱼,不如授人以渔”的教育理念 秉承:以人为本,质量第一,突出特色, 服务家长
由①,②得: AB=2FG.
说明 事实上,在审题中,条件“AE平分∠BAC”及“EF⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡”到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了. 例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).
22
证 过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中, AB2=AM2+BM2+2BM·MD. ①
在△ACM中,AC2=AM2+MC2-2MC·MD. ②
①+②,并注意到MB=MC,所以AB2+AC2=2(AM2+BM2). ③
如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为ma,mb,mc,由上述结论不难推出关于三角形三条中线长的公式. 推论 △ABC的中线长公式:
说明 三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的ma,mb,mc分别表示a,b,c边上的中线长.
例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.
分析 如图2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论,不难证明本题. 证 设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ中,
即2BQ2+2DQ2=4PQ2+BD2. ①
在△ABC中,BQ是AC边上的中线,所以
在△ACD中,QD是AC边上的中线,所以
◆ 以鲜明的教育理念启发人 ◆ 以浓厚的学习氛围影响人 第4页 ◆ 以不倦的育人精神感染人 ◆ 以优良的学风学纪严律人◆
将②,③代入①得
=4PQ2+BD2,
即AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.
…… 此处隐藏:3271字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [教学研究]2012西拉科学校团少队工作总结
- [教学研究]建筑工程公司档案管理制度
- [教学研究]小学数学人教版六年级上册圆的周长和面
- [教学研究]ERP电子行业解决方案
- [教学研究]钢支撑租赁合同范本
- [教学研究]预应力自动张拉系统用户手册Rev1.0
- [教学研究]MOOC课程:金瓶梅人物写真(每章节课后
- [教学研究]追加被执行人申请书(适用追加夫妻关系)
- [教学研究]2014年驾考科目一考试最新题库766
- [教学研究]2013-2014学年度九年级物理第15章《电
- [教学研究]新版中日交流标准日本语初级下26课-客
- [教学研究]小导管注浆施工作业指导书
- [教学研究]一般财务人员能力及人岗匹配评估表
- [教学研究]打1.2.页 小学一年级暑假口算100以内加
- [教学研究]学习贯彻《中国共产党党和国家机关基层
- [教学研究]2012年呼和浩特市中考试卷_35412
- [教学研究]最简易的电线电缆购销合同范本
- [教学研究]如何开展安全标准化建设
- [教学研究]工作分析与人岗匹配
- [教学研究]2016-2017学年高中历史第七单元现代中
- 山东省义务教育必修地方课程小学三年级
- 台湾宜兰大学互联网交换技术课程 01_In
- 思想品德:第一课《我知我家》课件(人
- SAR合成孔径雷达图像点目标仿真报告(附
- 利辛县“十三五”规划研究报告
- 2015-2020年中国手机APP行业市场发展趋
- 广告策略、创意表现、媒体方案
- 企业如何申请专利的的几点思考
- 《中国教育简史》网上作业
- 高中历史第二单元西方人文精神的起源及
- 年终晚会必备_精彩的主持稿_精心整理_
- 信息工程专业自荐书
- 2019高考历史人教版一轮练习:第十二单
- JAVA俱乐部管理系统软件需求规格说明书
- 2016-2021年中国小型板料折弯机行业市
- (人教新课标)六上_比的基本性质课件PPT
- 辽宁省公务员考试网申论备考技巧:名言
- 神经阻滞麻醉知情同意书
- 施工企业信息填报、审核和发布的相关事
- 初一(七年级)英语完形填空100篇




